BLACK AND GALVANIZED PIPE
 A53 SEAMLESS, ERW, A500, A1085 \& A-106 SEAMLESS Schedule Weight Pipe
 Seamless and Welded Steel Pipe, Plain End UPPER FIGURES-Wall Thickness in Inches LOWER FIGURES-Weight Per Foot in Pounds

Size: Nominal in.	Size: OD in.	USAS PIPE SCHEDULES												Double Extra Heavy
		10	20	30	40	STD.	60	80	Extra Heavy	100	120	140	160	
1/8	. 405				$\begin{array}{r} .068 \\ .24 \end{array}$	$\begin{array}{r} .068 \\ .24 \end{array}$		$\begin{array}{r} .095 \\ .31 \end{array}$	$\begin{array}{r} .095 \\ .31 \end{array}$					
$1 / 4$. 540				$\begin{array}{r} .088 \\ .42 \end{array}$	$\begin{array}{r} .088 \\ \hline \end{array}$		$\begin{array}{r} .119 \\ .54 \end{array}$	$\begin{array}{r} 119 \\ .54 \end{array}$					
3/8	. 675				$\begin{array}{r} .091 \\ .57 \end{array}$	$\begin{array}{r} .091 \\ .57 \end{array}$		$\begin{array}{r} .126 \\ .74 \end{array}$	$\begin{array}{r} .126 \\ .74 \end{array}$					
1/2	. 840				$\begin{array}{r} .109 \\ .85 \end{array}$	$\begin{array}{r} .109 \\ .85 \end{array}$		$\begin{aligned} & .147 \\ & 1.09 \end{aligned}$	$\begin{aligned} & .147 \\ & 1.09 \end{aligned}$				$\begin{aligned} & .188 \\ & 1.31 \end{aligned}$	$\begin{aligned} & .294 \\ & 1.71 \end{aligned}$
$3 / 4$	1.050				$\begin{aligned} & .113 \\ & 1.13 \end{aligned}$	$\begin{aligned} & .113 \\ & 1.13 \end{aligned}$		$\begin{aligned} & .154 \\ & 1.47 \end{aligned}$	$\begin{aligned} & .154 \\ & 1.47 \end{aligned}$				$\begin{aligned} & .219 \\ & 1.94 \end{aligned}$	$\begin{array}{r} .308 \\ 2.44 \end{array}$
1	1.315				$\begin{aligned} & .133 \\ & 1.68 \end{aligned}$	$\begin{aligned} & .133 \\ & 1.68 \end{aligned}$		$\begin{aligned} & 179 \\ & 2.17 \end{aligned}$	$\begin{array}{r} .179 \\ 2.17 \end{array}$				$\begin{array}{r} .250 \\ 2.84 \end{array}$	$\begin{aligned} & .358 \\ & 3.66 \end{aligned}$
$11 / 4$	1.660				$\begin{aligned} & .140 \\ & 2.27 \end{aligned}$	$\begin{array}{r} .140 \\ 2.27 \end{array}$		$\begin{aligned} & .191 \\ & 3.00 \end{aligned}$	$\begin{aligned} & .191 \\ & 3.00 \end{aligned}$				$\begin{array}{r} .250 \\ 3.76 \end{array}$	$\begin{aligned} & .382 \\ & 5.21 \end{aligned}$
$11 / 2$	1.900				$\begin{aligned} & .145 \\ & 2.72 \end{aligned}$	$\begin{aligned} & .145 \\ & 2.72 \end{aligned}$		$\begin{aligned} & .200 \\ & 3.63 \end{aligned}$	$\begin{aligned} & .200 \\ & 3.63 \end{aligned}$				$\begin{aligned} & .281 \\ & 4.86 \end{aligned}$	$\text { . } 400$
2	2.375				$\begin{aligned} & .154 \\ & 3.65 \end{aligned}$	$\begin{aligned} & .154 \\ & 3.65 \end{aligned}$		$\begin{aligned} & .218 \\ & 5.02 \end{aligned}$	$\begin{aligned} & .218 \\ & 5.02 \end{aligned}$				$\begin{aligned} & .344 \\ & 7.46 \end{aligned}$	$\begin{aligned} & .436 \\ & 9.03 \end{aligned}$
$2^{1 / 2}$	2.875				$\begin{aligned} & .203 \\ & 5.79 \end{aligned}$	$\begin{array}{r} .203 \\ 5.79 \end{array}$		$\begin{aligned} & .276 \\ & 7.66 \end{aligned}$	$\begin{aligned} & .276 \\ & 7.66 \end{aligned}$				$\begin{array}{r} .375 \\ 10.01 \end{array}$	$\begin{array}{r} .552 \\ 13.70 \end{array}$
3	3.500				$\begin{aligned} & .216 \\ & 7.58 \end{aligned}$	$\begin{aligned} & .216 \\ & 7.58 \end{aligned}$		$\begin{array}{r} .300 \\ 10.25 \end{array}$	$\begin{array}{r} .300 \\ 10.25 \end{array}$				$\begin{array}{r} .438 \\ 14.32 \end{array}$	$\begin{array}{r} .600 \\ 18.58 \end{array}$
$31 / 2$	4.000				$\begin{aligned} & .226 \\ & 9.11 \end{aligned}$	$\begin{aligned} & .226 \\ & 9.11 \end{aligned}$		$\begin{array}{r} .318 \\ 12.51 \end{array}$	$\begin{array}{r} .318 \\ 12.51 \end{array}$				-	-
5	5.563				$\begin{array}{r} .258 \\ 14.62 \end{array}$	$\begin{array}{r} .258 \\ 14.62 \end{array}$		$\begin{array}{r} .375 \\ 20.78 \end{array}$	$\begin{array}{r} .375 \\ 20.78 \end{array}$		$\begin{array}{r} .500 \\ 27.04 \end{array}$		$\begin{array}{r} .625 \\ 32.96 \end{array}$	$\begin{array}{r} .750 \\ 38.55 \end{array}$
6	6.625				$\begin{array}{r} .280 \\ 18.97 \end{array}$	$\begin{array}{r} .280 \\ 18.97 \end{array}$		$\begin{array}{r} .432 \\ 28.57 \end{array}$	$\begin{array}{r} .432 \\ 28.57 \end{array}$		$\begin{array}{r} .562 \\ 36.39 \end{array}$		$\begin{array}{r} .719 \\ 45.35 \end{array}$	$\begin{array}{r} .864 \\ 53.16 \end{array}$
8	8.625		$\begin{array}{r} .250 \\ 22.36 \end{array}$	$\begin{array}{r} .277 \\ 24.70 \end{array}$	$\begin{array}{r} .322 \\ 28.55 \end{array}$	$\begin{array}{r} .322 \\ 28.55 \end{array}$	$\begin{array}{r} .406 \\ 35.64 \end{array}$	$\begin{array}{r} .500 \\ 43.39 \\ \hline \end{array}$	$\begin{array}{r} .500 \\ 43.39 \\ \hline \end{array}$	$\begin{array}{r} .594 \\ 50.95 \end{array}$	$\begin{array}{r} .719 \\ 60.71 \end{array}$	$\begin{array}{r} .812 \\ 67.76 \end{array}$	$\begin{array}{r} .906 \\ 74.69 \end{array}$	$\begin{array}{r} .875 \\ 72.42 \end{array}$
10	10.750		$\begin{array}{r} .250 \\ 28.04 \end{array}$	$\begin{array}{r} .307 \\ 34.24 \end{array}$	$\begin{array}{r} .365 \\ 40.48 \\ \hline \end{array}$	$\begin{array}{r} .365 \\ 40.48 \end{array}$	$\begin{array}{r} .500 \\ 54.74 \end{array}$	$\begin{array}{r} .594 \\ 64.43 \end{array}$	$\begin{array}{r} .500 \\ 54.74 \end{array}$	$\begin{array}{r} .719 \\ 77.03 \end{array}$	$\begin{array}{r} .844 \\ 89.29 \end{array}$	$\begin{array}{r} 1.000 \\ 104.13 \end{array}$	$\begin{array}{r} 1.125 \\ 115.64 \end{array}$	-
12	12.750		$\begin{array}{r} .250 \\ 33.38 \end{array}$	$\begin{array}{r} .330 \\ 43.77 \end{array}$	$\begin{array}{r} .406 \\ 53.52 \end{array}$	$\begin{array}{r} .375 \\ 49.56 \end{array}$	$\begin{array}{r} .562 \\ 73.15 \end{array}$	$\begin{array}{r} .688 \\ 88.63 \end{array}$	$\begin{array}{r} .500 \\ 65.42 \end{array}$	$\begin{array}{r} .844 \\ 107.32 \end{array}$	$\begin{array}{r} 1.000 \\ 125.49 \end{array}$	$\begin{array}{r} 1.125 \\ 139.67 \end{array}$	$\begin{array}{r} 1.312 \\ 160.27 \end{array}$	-
14	14.000	$\begin{array}{r} .250 \\ 36.71 \end{array}$	$\begin{array}{r} .312 \\ 45.61 \end{array}$	$\begin{array}{r} .375 \\ 54.57 \end{array}$	$\begin{array}{r} .438 \\ 63.44 \end{array}$	$\begin{array}{r} .375 \\ 54.57 \end{array}$	$\begin{array}{r} .594 \\ 85.05 \end{array}$	$\begin{array}{r} .750 \\ 106.13 \end{array}$	$\begin{array}{r} .500 \\ 72.09 \end{array}$	$\begin{array}{r} .938 \\ 130.85 \end{array}$	$\begin{array}{r} 1.094 \\ 150.79 \end{array}$	$\begin{array}{r} 1.250 \\ 170.21 \end{array}$	$\begin{array}{r} 1.406 \\ 189.11 \end{array}$	-
16	16.000	$\begin{array}{r} .250 \\ 42.05 \end{array}$	$\begin{array}{r} .312 \\ 52.27 \end{array}$	$\begin{array}{r} .375 \\ 62.58 \end{array}$	$\begin{array}{r} .500 \\ 82.77 \end{array}$	$\begin{array}{r} .375 \\ 62.58 \end{array}$	$\begin{array}{r} .656 \\ 107.50 \end{array}$	$\begin{array}{r} .844 \\ 136.61 \end{array}$	$\begin{array}{r} .500 \\ 82.77 \end{array}$	$\begin{array}{r} 1.031 \\ 164.82 \end{array}$	$\begin{array}{r} 1.219 \\ 192.43 \end{array}$	$\begin{array}{r} 1.438 \\ 223.64 \end{array}$	$\begin{array}{r} 1.594 \\ 245.25 \end{array}$	-
18	18.000	$\begin{array}{r} .250 \\ 47.39 \end{array}$	$\begin{array}{r} .312 \\ 58.94 \end{array}$	$\begin{array}{r} .438 \\ 82.15 \end{array}$	$\begin{array}{r} .562 \\ 04.67 \end{array}$	$\begin{array}{r} .375 \\ 70.59 \end{array}$	$\begin{array}{r} .750 \\ 138.17 \end{array}$	$\begin{array}{r} .938 \\ 170.92 \end{array}$	$\begin{array}{r} .500 \\ 93.45 \end{array}$	$\begin{array}{r} 1.156 \\ 207.96 \end{array}$	$\begin{array}{r} 1.375 \\ 244.14 \end{array}$	$\begin{array}{r} 1.562 \\ 274.22 \end{array}$	$\begin{array}{r} 1.781 \\ 308.50 \end{array}$	-
20	20.000	$\begin{gathered} .250 \\ 52.73 \end{gathered}$	$\begin{array}{r} .375 \\ 78.60 \end{array}$	$\begin{array}{r} .500 \\ 104.13 \end{array}$	$\begin{array}{r} .594 \\ 123.11 \end{array}$	$\begin{array}{r} .375 \\ 78.60 \end{array}$	$\begin{array}{r} .812 \\ 166.40 \end{array}$	$\begin{array}{r} 1.031 \\ 208.87 \end{array}$	$\begin{array}{r} .500 \\ 104.13 \end{array}$	$\begin{array}{r} 1.281 \\ 256.10 \end{array}$	$\begin{array}{r} 1.500 \\ 296.37 \end{array}$	$\begin{array}{r} 1.750 \\ 341.09 \end{array}$	$\begin{array}{r} 1.969 \\ 379.17 \end{array}$	-
22	22.000	$\begin{array}{r} .250 \\ 58.07 \end{array}$	$\begin{array}{r} .375 \\ 86.61 \end{array}$	$\begin{array}{r} .500 \\ 114.81 \end{array}$	-	$\begin{array}{r} .375 \\ 86.61 \end{array}$	$\begin{array}{r} .875 \\ 197.41 \end{array}$	$\begin{array}{r} 1.125 \\ 250.82 \end{array}$	$\begin{array}{r} .500 \\ 114.81 \end{array}$	$\begin{array}{r} 1.375 \\ 302.88 \end{array}$	$\begin{array}{r} 1.625 \\ 354.51 \end{array}$	$\begin{array}{r} 1.875 \\ 403.00 \end{array}$	$\begin{array}{r} 2.125 \\ 451.06 \end{array}$	二
24	24.000	$\begin{array}{r} .250 \\ 63.41 \end{array}$	$\begin{array}{r} .375 \\ 94.62 \end{array}$	$\begin{array}{r} .562 \\ 140.68 \end{array}$	$\begin{array}{r} .688 \\ 171.29 \end{array}$	$\begin{array}{r} .375 \\ 94.62 \end{array}$	$\begin{array}{r} .969 \\ 238.35 \end{array}$	$\begin{array}{r} 1.219 \\ 296.58 \end{array}$	$\begin{array}{r} .500 \\ 125.49 \end{array}$	$\begin{array}{r} 1.531 \\ 367.39 \end{array}$	$\begin{array}{r} 1.812 \\ 429.39 \end{array}$	$\begin{array}{r} 2.062 \\ 483.12 \end{array}$	$\begin{array}{r} 2.344 \\ 542.13 \end{array}$	-

ASTM A1085

	ASTM A500-10 Grade B	ASTM A1085
Manufacture Process	Cold-Formed Welded	Cold-Formed Welded
Maximum Perimeter	88"	88"
Thickness Range	t<0.875"	0.148"-0.875"
Yield Strength	Round-42 ksi min.	All Shapes-50 ksi min70 ksi min
	Round-46 ksi min.	
Tensil Strength	Round-58 ksi min.	All Shapes-65 ksi min.
	Shapes-58 ksi min.	
Wall Thickness	+/-10\%	+10\% / -5\%
Mass Tolerance	NA	-3.5\%
Corner Radii	No More Than 3t max.	t $\leq 0.4001 .6 \mathrm{t}$ to 3.0t
		t>0.400 1.8t to 3.0t
CVN	NA	25 ft-lbs @ $40^{\circ} \mathrm{F}$
Elongation, min in 2:	23\%	21\%

ASTM A500 - ASTM A252 COMPARISON

	ASTM A500 / A500M -13		ASTM A252-10	
	ASTM A500M-13 covers cold-formed welded and seamless carbon steel round, square, rectangular, or special shape structural tubing for welded, riveted, or bolted construction of bridges and buildings, and for general structural purposes.		ASTM A252-10 covers nominal wall cylindrical steel pipe piles in which the steel cylinder acts as a permanent load-carrying member or as a shell to form cast-in-place concrete piles.	
Rounds	ASTM A500		ASTM A252	
	Grade B	Grade C	Grade 2	Grade 3
Yield Strength	42,000 psi min	46,000 psi min	35,000 psi min	45,000 psi min
Tensile Strength	58,000 psi min	62,000 psi min	60,000 psi min	66,000 psi min
Elongation in 2"	23	21	25	20
	ASTM A500		ASTM A252	
	Grade B	Grade C	All Grades	
Carbon	. 26 max	. 23 max	N/A	
Manganese	1.35 max	1.35 max	N/A	
Phosphorus	. 035 max	. 035 max	. 050 max	
Sulphur	. 035 max	. 035 max	N/A	
Silicon	N/A	N/A	N/A	
	ASTM A500		ASTM A252	
O.D. Size	All Grades		All Grades	
>1.9 to 2.5 incl.	$\pm 0.75 \%$		$\pm 1 \%$	
>2.5 to 3.5 incl .	$\pm 0.75 \%$		$\pm 1 \%$	
>3.5 to 5.5 incl.	$\pm 0.75 \%$		$\pm 1 \%$	
>5.5	$\pm 0.75 \%$		$\pm 1 \%$	
Wall Thickness	$\pm 10 \%$		-12.5\%	
Weight	Not Specified		15.0% over or 5% under its theoretical weight	
Straightness	$1 / 8$ " \times length (in feet) $\div 5$		Not Specified	

